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Abstract

We provide with a (q, ν)-deformation of the generalized hypergeometric
coherent states defined such that the normalization function is given by
generalized basic hypergeometric functions. These states are eigenstates
of suitably defined deformed lowering operators. We study the domain of
convergence of the corresponding normalization function. On the basis
of these states, we investigate generalized basic hypergeometric Husimi
distributions and corresponding phase distributions as well as new analytic basis
representations of arbitrary quantum states in Bargmann and Hardy spaces. The
quantum statistical properties of the states, such as photon-counting statistics
and quadrature squeezing are analytically and numerically discussed in the
framework of conventional quantum optics.

PACS numbers: 45.50.Ar, 42.50.Dv, 02.20.−a

(Some figures in this article are in colour only in the electronic version)

1. introduction

Coherent states (CSs) of the quantum harmonic oscillator [1–3], as well as their various
generalizations are so important in both mathematics and physics that they are worth studying in
their own right. For salient features of the physical phenomena involved and their mathematical
aspects, see [4–13].

Coherent states can be generalized using elegant and powerful algebraic methods and
dynamical properties of the studied system as well as the supersymmetric quantum mechanics
formalism. The system dynamics is usually exploited to construct CSs for systems with
equally spaced energy levels. In such a method proposed by Neito and Simmons [14, 15], the
position and momentum operators are built to give a harmonic oscillator like Hamiltonian. The
coherent states are then determined as states minimizing a generalized uncertainty relation.
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In [16], generalized CSs are generated using an algebraic method, while in [17, 18] their
construction is performed in the framework of the supersymmetric quantum mechanics
(SUSYQM) formalism. These methods reveal to be efficient in the construction of coherent
states for Morse [19, 20], the hydrogen atom [21], Eckart and Rosen–Morse [22] potentials as
well as for hypergeometric-type functions [23]. Other generalizations also exist, elaborated as
some special superpositions of canonical CSs. The known even and odd CSs [24], Shrödinger
cat states [25, 26], etc can be so identified.

Furthermore, it becomes a matter of routine to distinguish the following classes of coherent
state generalizations:

• The Barut–Giradello CSs [27] defined for the discrete series representations of the group
SU(1, 1). These states can be realized in some physical systems such as the Pöschl–Teller
and infinite square well potentials. Their generalization was performed by Gazeau and
Klauder [11, 28–30], and Perelemov [31], separately. The key of the latter generalization
lies on the idea that the construction of the oscillator CSs can be reformulated in the
context of the group representation theory. Thus, Perelomov’s CSs for a semi-simple Lie
group G are points of an orbit of a unitary irreducible representation U of G in a Hilbert
space H.

• The Penson–Solomon generalized CSs [32] which are based on the generalization of
the exponential function. These states include the Mittag-Leffler (ML) CSs [33], the
Tricomi (TC) CSs [34] and the generalized hypergeometric (GH) CSs, shortly denoted by
GHCSs in the sequel, introduced by Appl and Schiller [35]. These authors provide with
a very large class of holomorphic CSs for which the normalization functions are given
by generalized hypergeometric functions. These states have been extended to the mixed
(thermal) states and applied to the case of pseudoharmonic oscillator [37].

Much to our very great surprise, it seems that all these remarkable coherent state
generalizations, performed from the generalization of exponential function, can be generated
(work in progress in our group), as particular cases, from a more general theory elaborated by
Odzijewicz [38] in a nice, mathematically based work published in 1998, but unfortunately
hushed up in the recent literature on the topic. In the mentioned work, this author investigated
the quantum algebras generated by the coherent state maps of the disc, leading to a generalized
analysis which includes standard analysis as well as q-analysis. He provided with the
meromorphic continuation of the generalized basic hypergeometric series and constructed
a reproducing measure, when the series is treated as a reproducing kernel.

The present study yields a (q, ν)-deformation of the GHCSs, obtained from the
generalized bibasic hypergeometric series introduced in our previous work [39]:

φ1,d,b
μ,s,m �a,c,φ2

n,r,ν (z) =
+∞∑
l=0

(a; q)l(c;p)l(
φ2(p,q)

φ1(p,q)
q; q

)
l
(b; q)l(d;p)l

×
(

pμ+ν

qν

)l(l+1)/2

[(−1)lql(l−1)/2]1+m−n[(−1)lpl(l−1)/2]s−r

(
z

φ1(p, q)

)l

, (1)

where

a = (a1, . . . , an) c = (c1, . . . , cr )

b = (b1, . . . , bm) d = (d1, . . . , ds) (2)

(a; q)l = (a1; q)l . . . (an; q)l. (3)

The use of conventions and notations on q-series [40] is adopted. The built states include
a large class of well-known quantum states as particular or limiting cases.
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The paper is organized as follows. In the following section, we first introduce the
generalized basic hypergeometric states and study the domain of convergence and limit cases.
In section 3, we deal with the resolution of unity and give a new analytic basis representations
of arbitrary quantum states in Bargmann and Hardy spaces. In section 4, it is proved that
the new GBHSs are eigenstates of suitably well-defined lowering operators. In section 5 we
discuss the associated Husimi and Husimi phase distributions. Their geometrical and physical
properties in quantum optics are studied in section 6. Finally, we end with concluding remarks
in section 7.

2. Generalized basic hypergeometric states

In this section, we introduce the generalized hypergeometric states, classify them according
to the criteria of convergence and specify the constraints on the parameters which the states
depend on. Let us set s = r, c = d = 0R

r ; p = 1, φ1(1, q) = φ2(1, q) ≡ φ(q) with
limq→1 φ(q) = 1 and n = m + 1. Then, (1) reduces to the generalized basic hypergeometric
function

φ1,0,b
μ,s,m �a,0,φ2

n,s,ν (z) ≡ b
ν�

a
φ(z) =

+∞∑
l=0

(a; q)l

(q; q)l(b; q)l
(q−ν)l(l+1)/2

(
z

φ(q)

)l

, (4)

and the generalized basic hypergeometric states (GBHSs) can be defined as

|a, b; z〉νφ = (
b
νN a

φ (|z|2))−1/2
+∞∑
l=0

(q−ν)l(l+1)/4 zl√
bρa

φ(l)
|l〉, (5)

with the strictly positive parameter function

bρa
φ(l) = (q; q)l

(b; q)l

(a; q)l
φl. (6)

One can readily check that the normalization function is given by

b
νN a

φ (x) = b
ν�

a
φ(x) x = |z|2. (7)

The GBHSs depend on the complex variable z and on the set of numerator
(a1, a2, . . . , am+1) and denominator (b1, b2, . . . , bm) parameters. For notation convenience,
(a; q)l = 1 (resp. (b; q)l = 1) will be indicated by ‘−’ instead of a (resp. b).

In figure 1, as in the sequel, the graph (A) corresponds to the case a = −, b = −;
φ(q) = 1 and ν = −1 while the graph (B) corresponds to the case a1 = 0, a2 = q2, ai = 0
for i � 3; b1 = q, bi = 0 for i � 2; φ(q) = 1 and ν = −1. This figure confirms that, under
these conditions, the functions b

νN a
φ ((1 − q)x) reduce to exp(x) (the pointed line) as q → 1.

Remark 2.1. Limit and particular cases.

(i) In the limit q → 1, the states |−,−; (1 − q)1/2z〉νφ reduce to the conventional states

|z〉 ≡ e−|z|2/2
+∞∑
l=0

zl

√
l!

|l〉.

(ii) Taking ai = qαi and bj = qβj , i = 1, 2, . . . , m + 1; j = 1, 2, . . . , m, the states |a, b; z〉
reduce to |m+1,m; z〉 ≡ |α1, α2, . . . , αm+1;β1, β2, . . . , βm; z〉(m+1,m) when q → 1, where

3
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(A) (B)

Figure 1. The normalization function b
−1N

a
1 ((1 − q)x) ≡ Nab(x) versus x for various q values:

q = 1 (solid), q = 0.7 (dash), q = 0.8 (dashdot), q = 0.9 (dot).

|p, r; z〉 are the generalized hypergeometric states (GHS) defined by Appl and Schiller
[35]:

|p, r; z〉 ≡ |a1, . . . , ap; b1, . . . , br ; z〉

= [pNr (|z|2)]−1/2
+∞∑
l=0

zl√
pρr(l)

|l〉 (8)

with

pρr(l) = �(l + 1)
(b1)l . . . (br)l

(a1)l . . . (ap)l
, (9)

where (a)l = �(a + l)/�(l) is the Pochhammer symbol, and the normalization function
is given by the generalized hypergeometric function

pNr (ζ ) =
+∞∑
l=0

(a1)l . . . (ap)l

(b1)l . . . (br)l

ζ l

l!
. (10)

(iii) The states |−,−, (1 − q)1/2z〉−1
1 correspond to the coherent states introduced by Quesne

[4]:

|z〉 = [Eq((1 − q)q|z|2)]−1/2
+∞∑
n=0

zn√
[n]Qq !

|n〉 (11)

with

[n]Qq = 1 − q−n

q − 1
Eq(z) =

+∞∏
k=0

(1 + qkz)

[n]Qq ! ≡ [n]Qq [n − 1]Qq . . . [1]Qq .

4
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(iv) The states |−,−, (1 − q)1/2z〉0
1 correspond to the maths-type q-deformed coherent states

[5]:

|z〉 = [
expM

q (|z|2)]−1/2
+∞∑
n=0

zn√
[n]Mq !

|n〉 (12)

with

[n]Mq = 1 − qn

1 − q
expM

q (x) =
+∞∑
n=0

xn

[n]Mq !
.

The states (5) thus appear as a generalization of various deformed states known in the
literature. In particular, they yield a (q, ν)-deformation of the states given by Appl and Schiller
in [35]. It is worth noting that although one-parameter deformations have been mostly studied,
the multiparameter ones have aroused much interest because they become more flexible when
we are dealing with applications to concrete physical models (see [36] and references therein).

The normalization function (7) defines the scalar product of two GBHSs with identical
parameter sets:

ν
φ〈a, b; z′|a, b; z〉νφ = (

b
νN a

φ (|z|2)b
νN a

φ (|z′|2))−1/2
+∞∑
l=0

(
q−ν

)l(l+1)/2 z′∗lzl

bρa
φ(l)

=
b
νN a

φ (z′∗z)√
b
νN a

φ (|z|2)b
νN a

φ (|z′|2)
. (13)

It follows that the GBHSs are normalized, but not orthogonal. The scalar product is well
defined if the involved generalized basic hypergeometric functions converge. Throughout, we
suppose that 0 < q < 1. Let

ul = (q−ν)l(l+1)/2 (a; q)l

(q; q)l(b; q)l
. (14)

From

ul+1

ul

= (q−ν)l+1 1 − am+1q
l

1 − ql+1

m∏
k=1

(
1 − akq

l

1 − bkql

)
(15)

we deduce that the function b
νN a

φ (x) is convergent everywhere on the positive axis if ν < 0,
implying that |a, b; z〉νφ is well defined everywhere on the complex plane and on the open unit
disc if ν = 0.

These states depend analytically on the complex variable z and thus belong to the very
large class of holomorphic quantum states.

Let us end this section specifying the constraints on the parameters a1, . . . , am+1 and
b1, . . . , bm.

First, we suppose that bi 
= q−l , i = 1, 2, . . . , m and l ∈ N; otherwise, the normalization
function would be undefined. Moreover, to avoid undefined bρa

φ(l), we suppose that
ai 
= q−l , i = 1, 2, . . . , m + 1 and l ∈ N.

The positivity condition of the parameter functions bρa
φ(l) imposes the relations

1 − ql+1

1 − am+1ql

m∏
k=1

(
1 − akq

l

1 − bkql

)
> 0 ∀ l = 0, 1, 2, . . . , (16)
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which follows from the recurrence relation
bρa

φ(l + 1)

bρa
φ(l)

= 1 − ql+1

1 − am+1ql

m∏
k=1

(
1 − akq

l

1 − bkql

)
φ, (17)

with the ground value bρa
φ(0) = 1.

3. Generalized basic hypergeometric coherent states

In this section, we investigate generalized basic hypergeometric states GBHSs as an
(over)complete set of states allowing a resolution of unity with a non-negative weight function.

The resolution of unity of the GBHSs assumes the existence of a positive weight function
b
νWa

φ(|z|2) such that

1

π

∫ ∫
d2z|a, b; z〉νφ b

νWa
φ(|z|2) ν

φ〈a, b; z| =
+∞∑
l=0

|l〉〈l| ≡ I, (18)

where d2z = d(Re z) d(Im z); the integration is over the complex plane or unit disc.
By substituting z = r eiϕ into the left-hand side of (18) and integrating over ϕ, the function

b
νWa

φ(|z|2) takes the form

b
νWa

φ(x) = b
νN a

φ (x)b
νW̃a

φ(x) x = r2, (19)

where b
νW̃a

φ(x) has to be determined from the equation∫ R

0
xl b

νW̃a
φ(x) dx = qνl(l+1)/2 bρa

φ(l) l = 0, 1, 2, . . . . (20)

The above problem is nothing but the moment power problem. If R is a finite quantity, then it
reduces to the Haussdorff moment problem, while if R is infinite, then it becomes the Stieltjes
moment problem [41].

If l in (20) is extended to s − 1, where s ∈ C, then the problem can be formulated in
terms of the Mellin transform [42] which has been extensively used in the context of various
kinds of generalized coherent states. Here qνs(s−1)/2 bρa

φ(s − 1) is the Mellin transform,
M

[
b
νW̃a

φ(x); s
]
, of b

νW̃a
φ(x), i.e.,

qνs(s−1)/2 bρa
φ(s − 1) = M

[
b
νW̃a

φ(x); s
] ≡

∫ R

0
xs−1 b

νW̃a
φ(x) dx. (21)

As a matter of concrete realization, the states |−,−; z〉−1
φ have the weight function [4]

−
−1W̃

−
φ (x) = 1

φ(q) ln(q−1)

1

(−x/φ; q)∞
(22)

and the normalization function

−
−1N

−
φ (x) =

+∞∑
l=0

ql(l+1)/2

(q; q)l

(
x

φ(q)

)l

. (23)

The resolution of unity (18) can be used to introduce a new basis representation by
sandwiching it between two arbitrary state vectors, 〈ϕ| and |ψ〉, and writing the resulting
scalar product in the form

〈ϕ|ψ〉 = 1

π

∫ ∫
d2z

(
b
νϕ

a
φ(z)

)∗ b
νψ

a
φ(z) (24)

6
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with the wavefunctions, in the basis of generalized basic hypergeometric coherent states
(GBHCSs), expressed as

b
νϕ

a
φ(z) =

√
b
νWa

φ(|z|2) ν
φ〈a, b; z|ϕ〉

=
[

b
νWa

φ(|z|2)
b
νN a

φ (|z|2)

]1/2 +∞∑
l=0

(q−ν)l(l+1)/4 z∗l√
bρa

φ(l)
〈l|ϕ〉. (25)

This defines the GBHCSs representation of the state |ϕ〉. The series appearing in (25) defines
an entire analytic function of ζ = z∗, which may be regarded as another basis representation.
We call it the generalized basic hypergeometric analytic representation of |ϕ〉:

b
ν ϕ̃

a
φ(ζ ) =

+∞∑
l=0

(q−ν)l(l+1)/4 ζ l√
bρa

φ(l)
〈l|ϕ〉. (26)

The scalar product (24) can be then rewritten as

〈ϕ|ψ〉 =
∫ ∫

dμ(ζ )
(

b
ν ϕ̃

a
φ(ζ )

)∗ b
ν ψ̃

a
φ(ζ ) (27)

with the measure given by

dμ(ζ ) = d2ζ

π

b
νWa

φ(|ζ |2)
b
νN a

φ (|ζ |2) . (28)

Note that the basis analytic representations and the corresponding measure explicitly depend
on the parameter set a = (a1, . . . , am+1) and b = (b1, . . . , bm). For a given state |z〉, many
infinite basis analytic representations on the plane and unit disc can be defined, respectively,
as elements of bases of Bargmann and Hardy spaces with measure (28).

Let us now investigate the self-reproducing property. The density matrix admits the
expansion

σ =
+∞∑

k,l=0

σ(k, l)|l〉〈k| (29)

in Fock spaces. Between two GBHCSs, the matrix elements are expressed as

ν
φ〈a, b; z′|σ |a, b; z〉νφ = {

b
νN a

φ (|z|2)b
νN a

φ (|z′|2)}−1/2

×
+∞∑

k,l=0

σ(k, l)(q−v)l(l+1)/4(q−v)k(k+1)/4 z′∗kzl√
bρa

φ(k) bρa
φ(l)

≡ b
νσ

a
φ (z′, z). (30)

Using the completeness relation (18) for the GBHCSs, we write

b
νσ

a
φ (z′, z) =

∫
d2ζ b

νK
a
φ(ζ, z) b

νσ
a
φ (z′, ζ ), (31)

where the reproducing kernel b
νK

a
φ(ζ, z) is defined as

b
νK

a
φ(ζ, z) = 1

π
〈ζ |a, b; z〉νφ. (32)

Equation (32) gives the self-reproducing property of b
νσ

a
φ (z′, z) with b

νK
a
φ(ζ, z) as the self-

reproducing kernel. The kernel satisfies the required properties of a self-reproducing kernel.
Namely, firstly, it satisfies the matrix multiplication property:∫

d2ζ b
νK

a
φ(z, ζ )b

νK
a
φ(ζ, z′) = b

νK
a
φ(z, z′). (33)

7
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Secondly, since σ is Hermitian, the kernel satisfies the Hermicity property:(
b
νK

a
φ(x, ζ )

)∗ = b
νK

a
φ(ζ, x). (34)

From (13), it follows that b
νK

a
φ(z, z) > 0.

4. Generalized basic hypergeometric states as eigenstates of lowering operators

In this section, we define raising and lowering operators. The GBHSs, defined above in
section 3, are eigenstates of the lowering operators. Up to a factor, these operators appear
as a deformation of the creation and annihilation operators of the non-deformed harmonic
oscillator.

The generalized basic hypergeometric lowering and raising operators are defined by

b
νUa

φ =
+∞∑
l=0

b
νFa

φ(l)|l〉〈l + 1| (35a)

(
b
νUa

φ

)† =
+∞∑
l=0

b
νFa

φ(l)|l + 1〉〈l|, (35b)

where the coefficients b
νFa

φ(l) are given by

b
νFa

φ(l) = (qν)(l+1)/2

√√√√ 1 − ql+1

1 − am+1ql

m∏
k=1

(
1 − bkql

1 − akql

)
φ. (36)

From (16), one can observe that these coefficients are real and positive. The ladder
operators obey the noncanonical commutation relation,

[
b
νUa

φ,
(

b
νUa

φ

)† ] =
+∞∑
l=0

[(
b
νFa

φ(l)
)2 − (

b
νFa

φ(l − 1)
)2]|l〉〈l|, (37)

where b
νFa

φ(−1) ≡ 0 by definition. They act on the Fock space basis as follows:

b
νUa

φ |l〉 = b
νFa

φ(l − 1)|l − 1〉, (38a)(
b
νUa

φ

)†|l〉 = b
νFa

φ(l)|l + 1〉 (38b)

that justifies their names of lowering and raising operators, respectively. It is then easy to
show that the GBHSs are eigenstates of the lowering operator:

b
νUa

φ |a, b; z〉νφ = z|a, b; z〉νφ (39)

with the complex eigenvalue z. The link between the coefficients bFa
φ(l) defining the lowering

operator and the parameter function bρa
φ(l) is given by

bρa
φ(l) = (q−ν)l(l+1)/2 (

b
νFa

φ(0) b
νFa

φ(1) . . . b
νFa

φ(l − 1)
)2

. (40)

From (39), we deduce the relation
1√

1 − q

−
ν U−

φ |−,−; (1 − q)1/2z〉νφ = z|−,−; (1 − q)1/2z〉νφ, (41)

which reduces to

a|z〉 = z|z〉 (42)

8
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with

a =
+∞∑
l=0

√
l + 1|l〉〈l + 1|, (43)

as q → 1. It is then natural to call b
νAa

φ = 1√
1−q

b
νUa

φ

(
resp.

(
b
νAa

φ

)† = 1√
1−q

(
b
νUa

φ

)†)
the

generalized basic hypergeometric annihilation (resp. creation) operators. Given such non-
Hermitian operators, it is worthy of defining relevant Hermitian combinations by

b
νQa

φ = 1√
2

[(
b
νAa

φ

)†
+ b

νAa
φ

]
(44a)

b
νPa

φ = i√
2

[(
b
νAa

φ

)† − b
νAa

φ

]
, (44b)

which can be interpreted as generalized basic hypergeometric (momentum) coordinate
operators.

Let us now present a realization of the algebra spanned by the operators b
νAa

φ and
(

b
νAa

φ

)†
for particular cases of parameters a, b, ν and φ:

(i) Case a = −, b = −.
Let

[j ]νq = qνj 1 − qj

1 − q
φ(q). (45)

Then, from the relations

q−ν[j + 1]νq − [j ]νq = qj(ν+1)φ(q), q−ν[j + 1]νq − q[j ]νq = qνjφ(q),

we readily obtain

q−ν −
ν A−

φ

(−
ν A−

φ

)† − (−
ν A−

φ

)† −
ν A−

φ = φ(q)

+∞∑
j=0

qj(ν+1)|j 〉〈j |, (46a)

q−ν −
ν A−

φ

(−
ν A−

φ

)† − q
(−
ν A−

φ

)† −
ν A−

φ = φ(q)

+∞∑
j=0

qjν |j 〉〈j |. (46b)

Setting N = a†a, the number operator of the non-deformed oscillator algebra, leads to

q−ν −
ν A−

φ

(−
ν A−

φ

)† − (−
ν A−

φ

)† −
ν A−

φ = qN(ν+1)φ(q) (47a)

q−ν −
ν A−

φ

(−
ν A−

φ

)† − q
(−
ν A−

φ

)† −
ν A−

φ = qNνφ(q) (47b)[−
ν A−

φ ,N
] = −

ν A−
φ

[
N,

(−
ν A−

φ

)†] = (−
ν A−

φ

)†
. (47c)

On the space � of all finite combinations of the monomials zn, z ∈ C, n ∈ Z:

� =
{∑

n∈P

anz
n, an ∈ C, P ⊂ Z

}
,

we can perform a realization of the algebra (47a)–(47c) in the following terms:

(−
ν A−

φ

)†
h(z) := zh(z) (48a)

9
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−
ν A−

φ h(z) := φ(q)

z(1 − q)
qνρ[h(qνz) − qρh(qν+1z)] (48b)

Nh(z) :=
(

ρ + z
d

dz

)
h(z). (48c)

(ii) Case ν = 0, φ(q) = 1, am+1 = a and ak = bk = 0 for 0 � k � m.
In this case, denoting the operators b

νAa
φ and

(
b
νAa

φ

)†
by A and A†, respectively, one can

show that

AA†|n〉 = qn+1|n〉, A†A|n〉 = qn|n〉, (49)

where

qn = 1

1 − q

1 − qn

1 − aqn−1
. (50)

Since A†A and AA† are diagonalized in the Fock space {|n〉, n = 0, 1, 2, . . .}, any relation
R(qn+1, qn) = 0 is also valid for the operators [38]:

R(A†A,AA†) = 0. (51)

Hence, one can straightforwardly establish the relation

a(1 − q)2AA†A†A + qI = (a − q2)A†A + q(1 − a)AA†. (52)

Then, the following statement holds.

Proposition 4.1. On the space O(DR) of holomorpic functions on the disc DR of radius R,
the algebra (52) admits the following realization:

A†ϕ(z) := zϕ(z) (53a)

Aϕ(z) := r

z

{(
α − 1

1 − αQ

)
ϕ(z) + ϕ(z)

}
, (53b)

where

α = a

q
, r = 1

α(1 − q)
, (54)

and the operator Q acts as Qψ(z) = ψ(qz), for all ψ ∈ O(DR).

Proof. First, note that by using the identities (54), (52) can be rewritten as

(1 − q)AA†A†A + rI = r(α − q)A†A + r(1 − αq)AA†. (55)

From the relations

A†Aϕ(z) = r

{(
α − 1

1 − αQ

)
ϕ(z) + ϕ(z)

}

AA†ϕ(z) = r

{(
α − 1

1 − αqQ

)
ϕ(z) + ϕ(z)

}
and the decomposition

1

(1 − αQ)(1 − αqQ)
= 1

1 − q

(
1

1 − αQ
− q

1 − αqQ

)

10
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we have, for any ϕ ∈ O(DR),

(1 − q)AA†A†Aϕ(z) + rϕ(z) = r(α − 1)(1 − q)AA† 1

1 − αqQ
ϕ(z)

+ r2(1 − q)

(
α − 1

1 − αqQ
ϕ(z) + ϕ(z)

)
+ rϕ(z)

= r2(1 − q)(α − 1)2

(1 − αqQ)(1 − αQ)
ϕ(z) +

r2(1 − q)(α − 1)

1 − αQ
ϕ(z)

+
r2(1 − q)(α − 1)

1 − αqQ
ϕ(z) + r2(1 − q)ϕ(z) + rϕ(z)

= r2(α − q)

(
α − 1

1 − αQ
ϕ(z) + ϕ(z)

)
+ r2(1 − αq)

(
α − 1

1 − αqQ
ϕ(z) + ϕ(z)

)
− r(α − q)ϕ(z) − r2(1 − αq)ϕ(z) + rϕ(z) + r2(1 − q)ϕ(z)

= r(α − q)A†Aϕ(z) + r(1 − αq)AA†ϕ(z). �

When a = 0, the algebra (52) reduces to

AA† − qA†A = I, (56)

which defines nothing but the standard q-deformation of the harmonic oscillator [43].

5. Husimi and Husimi phase distributions

5.1. Husimi distribution

The Husimi distribution for the generalized basic hypergeometric states |a, b; z〉νφ is given by
the squared of the modulus of the wavefunction in the conventional coherent states |α〉:

Q|a,b;z〉νφ = 1

2π
|〈α|a, b; z〉νφ |2 (57)

with

〈α|a, b; z〉νφ =
[

e−|α|2

b
νN a

φ (|z|2)

]1/2 +∞∑
l=0

(q−ν)l(l+1)/4 (α∗z)l√
l!bρa

φ(l)
. (58)

Q|a,b;z〉νφ is positive, normalized to 1 with measure d2α and yields a two-dimensional probability
distribution over the complex α-plane.

By letting α = |α| eiθ , the Husimi phase distribution is defined by

P|a,b;z〉νφ (θ) :=
∫ +∞

0
Q|a,b;z〉νφ d|α|2. (59)

Since

∣∣〈α|a, b; z〉νφ
∣∣2 = e−|α|2

b
νN a

φ (|z|2)
+∞∑

k,l=0

z∗kzl|α|k+l ei(k−l)θ√
l!k!bρa

φ(l) bρa
φ(k)

(q−ν)l(l+1)/4(q−ν)k(k+1)/4, (60)

we obtain

P|a,b;z〉νφ (θ) = 1

2π

+∞∑
k,l=0

〈l|a, b; z〉νφ
(〈k|a, b; z〉νφ

)∗ G(l, k) e−i(l−k)θ (61)

11
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with

G(l, k) = �
(

k+l
2 + 1

)
√

�(l + 1)�(k + 1)
. (62)

One can readily check thatQ|−,−;(1−q)1/2z〉νφ reduces to the conventional Husimi distribution

(|〈α|z〉|2)/2π with

|〈α|z〉| = e−(|z|2+|α|2)/2
+∞∑
l=0

(α∗z)l

l!
(63)

as q → 1.

5.2. Generalized basic hypergeometric Husimi and Husimi phase distributions

By analogy with the conventional Husimi distribution, we now define the generalized basic
hypergeometric Husimi distribution of normalized states |ψ〉 by the square of modulus of the

wavefunction in the GBHCSs basis, ψ(z) :=
√

b
νWa

φ(|z|2) ν
φ〈a, b; z|ψ〉, by

Q|ψ〉(z) = 1

π

b
νWa

φ(|z|2) ν
φ〈a, b; z|ψ〉〈ψ |a, b; z〉νφ, (64)

which provides a two-dimensional true probability distribution over the complex z-plane for
ν < 0 and over the unit disc for ν = 0. As one may check, the normalization condition is due
to the resolution of unity. It is therefore mandatory for the states |a, b; z〉νφ to be coherent.

Defining generalized basic hypergeometric Husimi distributions, we formally replace the
coherent states in the usual Husimi distribution by the GHBCSs and introduce the weight
function into the distribution rather than into the integration measure.

The generalized basic hypergeometric Husimi distributions can be used to define
corresponding phase distributions by integrating over the modulus of the complex variable
z = |z| eiθ (x = |z|2):

P|ψ〉(θ) := 1

2π

∫ R

0

b
νWa

φ(|z|2) ν
φ〈a, b; z|ψ〉〈ψ |a, b; z〉νφ d|z|2. (65)

By letting ψl = 〈l|ψ〉 and making use of (21), we obtain

P|ψ〉(θ) = 1

2π

+∞∑
k,l=0

(q−ν(k−l)2/8)bGa
φ(l, k)ψ∗

l ψk e−i(k−l)θ (66)

with

bGa
φ(l, k) =

bρa
φ

(
k+l
2

)
√

bρa
φ(l) bρa

φ(k)
. (67)

bGa
φ(l, k) are symmetric in l and k and normalized to 1 for l = k, thus ensuring the normalization

condition ∫
dθ P|ψ〉(θ) = 1. (68)

For Fock states |N〉, we have ψl = δl,N and the phase distribution (66) reduces to

P|N〉(θ) = 1

2π
. (69)

12
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6. Geometrical and quantum optical properties

In this section, we study some geometrical and physical properties of the GBHSs |a, b; (1 −
q)1/2z〉νφ .

6.1. Photon number distribution

The GBHSs, |a, b; (1 − q)1/2z〉νφ , have the Fock representation,

〈l|a, b; (1 − q)1/2z〉νφ = (1 − q)l/2(q−ν)l(l+1)/4√
b
νN a

φ ((1 − q)|z|2) bρa
φ(l)

, (70)

from which follows the probability of finding the state |l〉 in the state |a, b; z〉νφ (photon number
distribution) expressed as

P̃|a,b;(1−q)1/2z〉νφ (l, x) = (1 − q)l(q−ν)l(l+1)/2

b
νN a

φ ((1 − q)|z|2) bρa
φ(l)

xl x = |z|2. (71)

P̃|−,−;(1−q)1/2z〉νφ (l, x) reduces to a Poisson distribution for the conventional CSs in the limit
q → 1.

The expectation values of the monomials (a†)rar , where a and a† are the conventional
boson annihilation and creation operators, are expressible through the derivatives of
b
νN a

φ ((1 − q)x) as [32]

ν
φ〈a, b; z|(a†)rar |a, b; z〉νφ ≡ ν

φ〈(a†)rar〉νφ

= xr

b
νN a

φ ((1 − q)x)

dr b
νN a

φ ((1 − q)x)

dxr
r = 0, 1, 2, . . . . (72)

A Poisson distribution is characterized by the fact that the variance of the number operator
N = a†a is equal to its average. The deviation from Poisson statistics can be measured with
the Mandel parameter b

νQa
φ(x) [44]:

b
νQa

φ(x) =
(
(�N) ν

φ

)2 − (
ν
φ〈N〉νφ

)2

ν
φ〈N〉νφ

,
(
(�N)νφ

)2 = ν
φ〈N2〉νφ − (

ν
φ〈N〉νφ

)2
, (73)

which vanishes for the Poisson distribution. By using (72) to evaluate the averages in (73),
one easily obtains

b
νQa

φ(x) = x

((
b
νN a

φ ((1 − q)x)
)′′(

b
νN a

φ ((1 − q)x)
)′ −

(
b
νN a

φ ((1 − q)x)
)′

b
νN a

φ ((1 − q)x)

)
. (74)

Here primes denote the orders of differentiation with respect to the variable x. Thus, the
statistical properties of the states |a, b; z〉νφ only depend on the growth properties of the
normalization function b

νN a
φ ((1 − q)x). A state for which b

νQa
φ(x) < 0 (resp. > 0) is called

sub-Poissonian (resp. super-Poissonian).
As illustrated in figure 2, b

−1Qa
1 (x) < 0 yielding a sub-Poissonian distribution.

6.2. Metric factor

The correspondence from z to |a, b; (1 − q)1/2z〉νφ is a mapping from the space C of complex
numbers into a continuous subset of unit vectors in the Hilbert space. As such, one may
imagine that this map generates a two-dimensional (because C = R ⊕ R) surface sweeping

13
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Figure 2. The Mandel parameter b
−1Q

a
1(x) ≡ Qab(x) versus x for various q values: q = 0.7

(dash), q = 0.8 (dashdot), q = 0.9 (dot).

through an infinite-dimensional Hilbert space. The two-dimensional surface can be described
by its geometry which, in an explicit form, is represented by the induced two-dimensional
Riemannian metric tensor in the line element dσ ν

φ . This metric is not that induced directly by
the Hilbert space metric itself, but rather one induced by the physical content of the Hilbert
space in which vectors differing only in phase are identified. A suitable metric between any
two Hilbert space vectors, say |ψ〉 and |φ〉, is thus the ray metric defined by

dray(|ψ〉; |φ〉) := min
0�α<2π

‖|ψ〉 − eiα|φ〉‖. (75)

The infinitesimal form of this metric is given by the Fubini–Study metric which, restricted to
coherent states, takes the form

dσ := ∥∥d|a, b; z〉νφ
∥∥2 − ∣∣ν

φ
〈a, b; z| d|a, b; z〉νφ

∣∣2
. (76)

A moment’s reflection shows that

dσ ν
φ = b

νWa
φ(x) dz∗ dz (77)

with

b
νWa

φ(x) = d

dx

ν
φ〈N〉νφ =

(
x
(

b
νN a

φ ((1 − q)x)
)′

b
νN a

φ ((1 − q)x)

)′
x = |z|2 (78)

as the corresponding metric factor. Therefore, the result is a circular symmetric two-
dimensional geometry. If b

νWa
φ(x) ≡ 1, dσ ν

φ describes a flat two-dimensional surface.
Otherwise, the geometry is non-flat.

Under the conditions on which the graphs are given, figure 3 shows that, for the GBHSs
|a, b; (1−q)1/2z〉−1

1 , the metric factor may be less or greater than unity according to the values
of x. Therefore, the geometry is non-flat.

14
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Figure 3. The metric factor b
−1W

a
1 (x) ≡ Wab(x) versus x for various q values: q = 0.7 (dash),

q = 0.8 (dashdot), q = 0.9 (dot).

6.3. Squeezing properties

Let us consider the conventional quadrature operators X and P defined in terms of non-deformed
operators a and a†:

X = 1√
2
(a + a†), P = 1

i
√

2
(a − a†). (79)

The commutation relation for a and a† leads to the following uncertainty relation:

(�X)2(�P )2 � 1
4 |[X,P ]|2 = 1

4 . (80)

In the vacuum state |0〉, we have (�X)2
0 = 1/2 and (�P )2

0 = 1/2, and so (�X)2
0(�P )2

0 = 1/4.
While it is impossible to lower the product (�X)2(�P )2 below the vacuum uncertainty value,
it is nevertheless possible to define the squeezed states for which at most one quadrature
variance lies below the vacuum value:

(�X)2 < 1
2 or (�P )2 < 1

2 . (81)

For the states |a, b; (1 − q)1/2z〉νφ , it is straightforward to show that the variances of X and P
are given by

(�X)2 = 2(Re(z))2[Sν(2,0)
φ (x) − (

S
ν(1,0)
φ (x)

)2]
+ x

[
S

ν(1,1)
φ (x) − S

ν(2,0)
φ (x)

]
+ 1

2 , (82)

(�P )2 = 2(Im(z))2[Sν(2,0)
φ (x) − (

S
ν(1,0)
φ (x)

)2]
+ x

[
S

ν(1,1)
φ (x) − S

ν(2,0)
φ (x)

]
+ 1

2 , (83)

where

S
ν(p,r)

φ (x) = 1
b
νN a

φ ((1 − q)x)

+∞∑
l=0

(1 − q)l+(p+r)/2q−ν(l+p)(l+p+1)/4q−ν(l+r)(l+r+1)/4

×
(

(l + r)!(l + p)!
bρa

φ(l + r) bρa
φ(l + p)

)1/2
xl

l!
r, p = 0, 1, 2, . . . . (84)
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Figure 4. The variance ratio b
−1R

a
1(x) ≡ Rab(x) versus x for various q values: q = 0.7 (dash),

q = 0.8 (dashdot), q = 0.9 (dot).

The plot of b
−1Ra

1(x) = 2(�x)2, the ratio of the variance (�x)2 in |a, b; z〉−1
1 to the variance

1/2 in the vacuum state, shows that there is substantial squeezing (see figure 4).

7. Concluding remarks

In this paper, we have defined a (q, ν)-deformation of the generalized hypergeometric coherent
states |a, b; z〉νφ depending on the vector parameters a, b, the function φ and the parameter
ν. These states are defined such that their normalization function yields generalized basic
hypergeometric functions, what justifies the name of generalized basic hypergeometric states
(GBHSs). We have found that if ν < 0, the GBHSs are defined on the whole plane, while if
ν = 0, they are defined on the unit disc. Limit and particular cases yield well-known non-
deformed and deformed states, respectively. Furthermore, we also discussed the associated
resolution of unity using Mellin transform techniques. The GBHSs on the whole plane (unit
disc) are eigenstates, with eigenvalue z, of suitably defined lowering operators; the latter may
be considered as a deformation of the usual annihilation operator of the harmonic oscillator.

In the case where the GBHSs allow the resolution of unity in the form of an ordinary
integral with a positive function, the generalized basic hypergeometric coherent states have
been used to define a new generalized basic hypergeometric analytic representation of a state
|ϕ〉. We have also studied their self-reproducing property. These deformed coherent states
can also be used to define generalized basic hypergeometric Husimi distribution as well as the
corresponding phase distribution.

Finally, the physical characteristics of the GBHSs have been analyzed for relevant values
of a, b, φ and ν. The graphs have showed that the Mandel parameter and the variance ratio
b
−1Ra

1(x) decrease faster in the case a1 = 0, a2 = q2, ai = 0 for i � 3; b1 = q, bi = 0
for i � 2; φ(q) = 1 and ν = −1 than the Quesne’s case (a = −, b = −; φ(q) = 1 and
ν = −1). In figure 3(B), we find that there exists x0 
= 0 such that the metric factor b

−1Wa
1 (x)

is greater than 1 for x < x0, and b
−1Wa

1 (x) is less than 1 for x � x0. Such a physical behavior,
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which has not been observed in previous works by Quesne, suggests that the (q, ν)-basic
hypergeometric states deserve further investigations from both theoretical and experimental
aspects in quantum optics.

Acknowledgments

The authors would like to thank the referees for their useful comments which helped them to
improve the paper. This work is partially supported by the Abdus Salam International Centre
for Theoretical Physics (ICTP, Trieste, Italy) through the OEA-ICMPA-Prj-15. The ICMPA
is in partnership with the Daniel Iagolnitzer Foundation (DIF), France.

References

[1] Klauder J R 1963 Continuous-representation theory: I. Postulates of continuous representation theory J. Math.
Phys 4 1055

[2] Glauder R J 1963 The quantum theory of optical coherence Phys. Rev. 130 2529
[3] Sudarshan E C G 1963 Equivalence of semiclassical and quantum mechanical descriptions of statistical light

beams Phys. Rev. 10 277
[4] Quesne C 2002 New q-deformed coherent states with an explicitly known resolution of unity J. Phys. A: Math.

Gen. 35 92136
[5] Quesne C, Penson K A and Tkachuk V M 2003 Comment on: ‘Maths-type q-deformed coherent states for

q > 1 Phys. Lett. A 313 29
[6] Hounkonnou M N and Ngompe Nkouankam E B 2007 New (p, q; μ, ν, f )-deformed states J. Phys. A: Math.

Theor. 40 12113
[7] Dodonov V V 2002 Nonclassical states in quantum optics: a squeezed review of the first 75 years J. Opt. B:

Quantum Semiclassical Opt 4 R1
[8] Feng D H, Klauder J R and Strayer M R 1994 Coherent States. Past, Present, and Future (Singapore: World

Scientific)
[9] Klauder J R and Skagerstam B S 1985 Coherent States: Applications in Physics and Mathematical Physics

(Singapore: World Scientific)
[10] Klauder J R and Sudarshan E C G 1968 Fundamentals of Quantum Optics (New York: Benjamin)
[11] Gazeau J P and Klauder J R 1999 Coherent states for systems with discrete and continuous spectrum J. Phys.

A: Math. Gen. 32 123
[12] Ali S T, Antoine J P and Gazeau J P 2000 Coherent States, Wavelets and Their Generalizations (New York:

Springer)
[13] Antoine J P, Gazeau J P, Klauder J R, Monceau P and Penson K A 2001 Temporally stable coherent states for
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